Fractional Laplace Operator and Meijer G-function

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalues of the fractional Laplace operator in the unit ball

We describe a highly efficient numerical scheme for finding two-sided bounds for the eigenvalues of the fractional Laplace operator (−∆)α/2 in the unit ball D ⊂ Rd, with a Dirichlet condition in the complement of D. The standard Rayleigh–Ritz variational method is used for the upper bounds, while the lower bounds involve the less-known Aronszajn method of intermediate problems. Both require exp...

متن کامل

Meijer G–Functions: A Gentle Introduction

T he Meijer G–functions are a remarkable family G of functions of one variable, each of them determined by finitely many indices. Although each such function is a linear combination of certain special functions of standard type, they seem not to be well known in the mathematical community generally. Indeed they are not even mentioned in most books on special functions, e.g., [1], [18]. Even the...

متن کامل

Nonlinear Picone identities to Pseudo $p$-Laplace operator and applications

In this paper, we derive a nonlinear Picone identity to the pseudo p-Laplace operator, which contains some known Picone identities and removes a condition used in many previous papers. Some applications are given including a Liouville type theorem to the singular pseudo p-Laplace system, a Sturmian comparison principle to the pseudo p-Laplace equation, a new Hardy type inequality with weight an...

متن کامل

Adaptive Discrete Laplace Operator

Diffusion processes capture information about the geometry of an object such as its curvature, symmetries and particular points. The evolution of the diffusion is governed by the Laplace-Beltrami operator which presides to the diffusion on the manifold. In this paper, we define a new discrete adaptive Laplacian for digital objects, generalizing the operator defined on meshes. We study its eigen...

متن کامل

Shape-based Transfer Function Using Laplace-Beltrami Operator

We exploit the Laplace-Beltrami operator to represent shapes which in turn is used for designing a shape based transfer function for volume rendering. Laplace-Beltrami spectral measures are isometry invariant and are one of the most powerful ways to represent shape, also called “Shape-DNA”. Isosurfaces are extracted from the volume data and the Laplace-Beltrami operator is applied on these extr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Constructive Approximation

سال: 2016

ISSN: 0176-4276,1432-0940

DOI: 10.1007/s00365-016-9336-4